• 在线客服

首页 > 一文读懂PN结的原理及应用
关注道合顺公众号,了解第一手芯资讯

一文读懂PN结的原理及应用

2024-05-06 10:56:37 8,027

PN结是半导体器件中的一个基本结构,它由P型半导体和N型半导体紧密接触并相互结合在一起形成。P型半导体富含空穴(正电荷载体),是通过掺入受主杂质原子得到的;而N型半导体富含自由电子(负电荷载体),是通过掺入施主杂质原子获得的。当这两种不同类型的半导体材料接触时,会在它们的交界区域形成一个特殊的区域,称为PN结。#PN结#是许多半导体器件如二极管、晶体管、太阳能电池等的核心组成部分,其单向导电性是这些器件功能实现的基础。

PN结原理

N型半导体:纯半导体中掺杂五价杂质(原子核最外层有5个电子的物质,如磷、砷、锑等)后,其内部就会有大量带负电的电子。半导体(因为半导体原子核的外层一般只有4个电子,所以可以理解为当掺杂五价元素时,半导体中的电子数量就更多),这种电子较多的半导体称为N型半导体。

P型半导体:纯半导体中掺杂三价杂质(如硼、铝、镓)后,半导体中电子较少,会产生大量空穴(可视为正电荷) ,而这种空穴较多的半导体称为P型半导体。

PN结原理

 

PN结形成

当P型半导体和N型半导体接合在一起时,由于P型半导体中的空穴浓度较高,而N型半导体中的电子浓度较高,因此会形成扩散运动,并且P型半导体中的空穴将向其浓度较低的方向移动。 N型半导体的电子也会扩散到其浓度低的地方,从而扩散到P型区域。这样,不能自由移动的负离子留在P型区,不能自由移动的正离子留在N型区,一正一负,形成从左到右的内电场PN结内部。这个内部电场基本上反映了PN结的工作特性。还有一点需要注意的是,PN结只是部分带电,即P型区带负电,N型区带正电,但它们是中和的,整体呈中性。

PN结的形成过程

在杂质半导体中,正电荷和负电荷的数量相等,它们的作用相互抵消,从而保持电中性。

1、载流子浓度差产生的倍数扩散运动

P型半导体和N型半导体结合后,在它们的结处出现电子和空穴的浓度差。 N型区电子多空穴少,P型区空穴多电子少。这样,许多电子和空穴必须从高浓度扩散到低浓度。因此,一些电子必须从N型区扩散到P型区,而一些空穴必须从P型区扩散到N型区。

2、电子和空穴复合形成空间电荷区

电子和空穴具有相反的电荷,它们在扩散过程中会重新结合(中和),导致P区和N区原有的电中性被破坏。 P 区失去空穴会留下带负电的离子,N 区失去电子会留下带正电的离子。这些离子由于材料结构的关系而不能移动,因此被称为空间电荷,它们集中在P区和N区的界面附近,形成薄薄的空间电荷区,这就是所谓的PN交界处。

3、空间电荷区产生的内部电场E阻止多个粒子的扩散运动。

由于正负电荷之间的相互作用,在空间电荷区中形成电场,其方向是从带正电的N区到带负电的P区,因为电场是在半导体内部形成的。影响载流子扩散,故称为内电场。由于内部电场的方向与电子的扩散方向相同而与空穴的扩散方向相反,因此阻止了载流子的扩散运动。

综上所述,PN结内载流子运动有两种。一是多数载流子克服电场阻力的扩散运动;另一种是少数载流子在内电场作用下的漂移运动。因此,只有当扩散运动和漂移运动达到动态平衡时,空间电荷区的宽度和内建电场才能相对稳定。由于两种运动产生的电流方向相反,因此在没有外加电场或其他因素的情况下,PN结中不存在宏观电流。

PN 结特性

PN结单向导电

PN结具有单向导电性。如果施加的电压使电流从P区流向N区,则PN结电阻低,因此电流大;否则电阻大,电流小。

如果施加电压使PN结:

P区的电位高于N区,称为正向电压,简称正向偏压;

P区的电位低于N区的电位,称为反向电压,简称反向偏压。

(1)施加正向电压时PN结导通

施加正向电压时PN结导通

施加正向电压时PN结的导通如图所示。外加正向电压的一部分落在PN结区域,其方向与PN结内电场方向相反,减弱了电场。因此,内部电场对多子扩散运动的阻碍减弱,扩散电流增大。扩散电流远大于漂移电流,漂移电流的影响可以忽略不计,PN结表现出低电阻。

(2) 施加反向电压时PN结导通

施加反向电压时PN结导通

 

施加的反向电压一部分落在PN结区域,其方向与PN结内电场方向相同,使电场加强。内部电场对多子扩散运动的阻力增强,扩散电流大大减小。此时,PN结区少数载流子在内电场作用下形成的漂移电流大于扩散电流,扩散电流可以忽略不计,PN结呈现高电阻。

在一定的温度条件下,本征激发所决定的少数载流子浓度是恒定的,因此少数载流子形成的漂移电流是恒定的,基本上与所施加的反向电压无关。该电流也称为反向饱和电流。

PN结击穿特性

如图所示,当施加在PN结上的反向电压增大到一定值时,反向电流突然急剧增大,PN结产生电击穿——这就是PN结的击穿特性。发生击穿时的反向偏压称为PN结的反向击穿电压VBR。

PN结击穿特性

 

PN结的电击穿是可逆击穿,如果及时调低偏置电压,PN结就会恢复原来的特性。可以利用电击穿特性(例如齐纳二极管)。热击穿即烧毁,是不可逆击穿。使用时尽量避免。

PN结击穿后,PN结上的压降高,电流大,功率大。当PN结上的功耗使PN结升温并超过其耗散功率时,PN结将发生热击穿。此时PN结的电流与温度之间存在恶性循环,最终会导致PN结烧毁。

PN结的电容效应

PN结除了单向导电外,还具有一定的电容效应。根据产生电容的原因可分为:

(1) 势垒电容CB

势垒电容由空间电荷区域中的离子薄层形成。当施加的电压改变PN结上的压降时,离子薄层的厚度也随之改变,相当于PN结储存的电荷量发生变化,就像电容器的充放电一样。势垒电容的示意图如下图所示。

 

势垒电容CB

(2)扩散电容CD

扩散电容是由扩散后的PN结另一侧的多子累积形成的。当PN结正向偏置时,从N区扩散到P区的电子与外部电源提供的空穴复合,形成正向电流。新扩散的电子在靠近PN结的P区聚集,形成一定的多子浓度梯度分布曲线。反之,从P区向N区扩散的空穴在N区也形成类似的浓度梯度分布曲线。扩散电容的原理图如下图所示。

扩散电容CD

 

当施加的正向电压不同时,扩散电流,即外电路电流的大小也不同。因此,PN结两侧堆叠的多电子的浓度梯度分布也是不同的,相当于电容器的充电和放电过程。势垒电容和扩散电容都是非线性电容。主要考虑PN结反向偏置时的势垒电容。 PN结正向偏压时主要考虑扩散电容

PN结二极管

道合顺分析PN结二极管理论或 PN结二极管工作原理

当 p 型半导体熔合到 n 型半导体时,二极管结上会产生势垒电压,形成PN 结二极管。如果我们在 N 型和 P 型材料的末端进行电连接,然后将它们连接到电池电源,那么现在就会有一个额外的能源来克服这个障碍。

添加这种额外能源的效果导致自由电子能够通过PN 结中的耗尽区从一侧到达另一侧。 PN 结相对于势垒宽度的行为产生了不对称导电两端器件,即 PN 结二极管。

PN结二极管是最简单的半导体器件之一,具有只允许电流沿一个方向流动的特性。然而,与电阻器不同,二极管由于其指数电流-电压 (IV) 关系,相对于所施加的电压不是线性的,因此我们不能仅使用欧姆定律方程来描述其工作情况。

如果在PN结两端施加适当的正电压(正向偏压),随着PN结周围耗尽层的宽度减小,自由电子和空穴可以提供通过结所需的额外能量。

通过施加负电压(反向偏压),自由电荷被从结中拉出,导致耗尽层宽度增加。这会增加或减少结本身的有效电阻,从而允许或阻止电流流过二极管。

然后,耗尽层随着反向电压的增加而变宽,并随着正向电压施加的增加而变窄。这是由于PN结两侧的电性能不同,导致物理变化。结果之一是整流,如 PN 结二极管的静态 IV(电流-电压)特性所示。如下所示,当偏置电压的极性改变时,整流电流由不对称电流表示。PN结二极管的符号和静态IV(电流-电压)特性

PN结二极管符号和静态IV(电流-电压)特性

但在将PN结用作实际器件或整流器件之前,我们需要首先对PN结进行偏置,即在其两端连接一个电位。在上面的电压轴上,“反向偏压”是指增加势垒的外部电压。降低势垒的外部电压作用于“正向偏压”方向。

标准结型二极管有两个工作区域和三种可能的“偏置”条件,它们是:

1. 零偏压——没有外部电压施加到PN结二极管上。

2. 反向偏置 – 二极管两端的电位连接对于 P 型材料为负 (-ve),对于 N 型材料为正 (+ve),这会增加 PN 结二极管的宽度。

3. 正向偏压 – 二极管两端的正电位 (+ve) 到 P 型材料,负电位 (-ve) 到 N 型材料,这会减小 PN 结二极管的宽度。

零偏压 PN 结二极管

二极管以零偏压连接时,没有外部势能施加到 PN 结。然而,如果二极管端子短接在一起,P型材料中的一些空穴(多数载流子)将有足够的能量来克服势垒,从而使电势穿过结。这称为“正向电流”(IF)。

同样,在 N 型材料(少数载流子)中产生的空穴将有利于这一点,并以相反的方向穿过结。这称为“反向电流”(IR)。这种电子和空穴进出 PN 结的传输称为扩散,如下所示。

零偏压PN结二极管

 

现在存在的势垒阻止更多的多数载流子扩散穿过结。然而,势垒有助于少数载流子(P 区中的少量自由电子和 N 区中的少量空穴)漂移穿过结。

然后,当多数载流子相等且全部朝相反方向移动时,就建立了“平衡”或平衡,因此最终结果是流过电路的电流为零。当这种情况发生时,该节点被称为处于“动态平衡”状态。

由于热能不断产生少数载流子,这种平衡可以通过提高PN结的温度来破坏,导致少数载流子的产生增加,从而导致漏电流增加,但电流无法流动,因为任何电路都没有连接到PN结上。 PN结。

反向偏置 PN 结二极管

当二极管在反向偏压下连接时,向N型材料施加正电压,向P型材料施加负电压。

施加到 N 型材料的正电压将电子吸引到正极并远离结,而 P 型端的空穴也被吸引远离结朝向负极。

最终的结果是,由于缺乏电子和空穴,耗尽层变得更宽并呈现出高阻抗路径,几乎是绝缘体。结果是PN 结中出现高势垒,阻止电流流过半导体材料。

反向偏压导致耗尽层增加

 

反向偏置PN结二极管

 

这种情况代表 PN 结的高电阻值,并且随着偏置电压的增加,流经结二极管的电流几乎为零。然而,确实有很小的漏电流流过结,其测量单位为微安 (μA)。

最后要注意的是,如果施加到二极管的反向偏置电压Vr增加到足够高的值,将会导致二极管的PN结由于结周围的雪崩效应而过热并失效。这会导致二极管短路并导致最大电路电流流动,这在下面的反向静态特性曲线中显示为逐步下降的斜率。

PN结二极管的反向特性曲线

PN结二极管的反向特性曲线

有时,这种雪崩效应在稳压电路中具有实际应用,其中串联限流电阻与二极管一起使用,将反向击穿电流限制在预设的最大值,从而在二极管上产生固定电压输出。这些类型的二极管通常称为齐纳二极管

正向偏置 PN 结二极管

当二极管在正向偏置条件下连接时,负电压施加到N型材料,正电压施加到P型材料。如果该外部电压大于势垒值(硅约为 0.7 伏,锗约为 0.3 伏),则势垒将被克服,电流将开始流动。

这是因为负电压将电子推向结,这导致电子传递能量并与正电压以相反方向推向结的空穴结合。这导致了零电流流向静态曲线上称为“拐点”的电压点的特性曲线,然后在外部电压几乎没有增加的情况下,高电流流过二极管,如下所示。

PN结二极管的正向特性曲线

PN结二极管的正向特性曲线

 

在 PN 结二极管上施加正向偏置电压会导致耗尽层变得非常薄且狭窄,这代表通过结的低阻抗路径,允许大电流流动。电流突然增加的点被表示为上述静态 IV 特性上的“拐点”。

减少因正向偏置而产生的耗尽层在 PN 结二极管上施加正向偏置电压会导致耗尽层变得非常薄且狭窄,这表示通过结的低阻抗路径,从而允许大电流流动。电流突然增加的点被表示为上述静态 IV 特性上的“拐点”。

由于转发偏压的减少而形成耗尽层

正向偏置 PN 结二极管

这种情况代表通过 PN 结的低电阻路径,允许非常大的电流流过二极管,而偏置电压仅小幅增加。通过耗尽层的作用,结或二极管两端的实际电位差保持恒定,对于锗结二极管约为 0.3v,对于硅结二极管约为 0.7v。

由于二极管可以有效地短路,因此在该拐点之上传导“无限”电流,因此电阻器与二极管串联以限制其电流。超过其最大正向电流可能会导致设备以热量形式消耗的功率超过设计值,从而导致设备快速失效。

*免责声明:本文由道合顺整理自网络。道合顺推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。

相关文章

标签

STM32F405RGT6微控制器技术规格PDF数据手册区别对比1660ti和1660s显卡富士康2024年Q2财报STM8S003F3P6电阻摇表测量电阻的正确步骤串通投标火箭军采购禁令西安交通大学ULN2003ADR晶体管电路图处理器Qualcomm(高通)骁龙750g处理器IBM中国研究院TMS320F28335PGFA锂聚合物电池与锂离子电池RTX 3050显卡台积电(tsmc)晶圆代工厂电池芯片原材料第一代骁龙6芯片中国科技50强企业榜单2024年度前50名中国科技企业榜单天玑1000+处理器处理器测评Intel处理器i3i5i7i9处理器怎么选ADC模数转换器DAC数模转换器ADC和DAC的区别2N2222AUB使用指南2024处理器排行榜处理器CPU选购指南NUC029LAN天玑6020处理器象帝先国产GPU芯片厂商英特尔intelTPS2553DBVR替代型号零件使用指南色环电阻的读取方法电阻如何正确读取色环电阻LL4148二极管制造商品牌信息瞬态电压抑制器瞬态电压抑制器符号瞬态电压抑制器用途英伟达电子厂SN75176BDR收发器应用使用指南STM32F103C8T6博通W25Q128JVRC0402JR-070RL电阻器MMA8452QR1加速度计高通骁龙778G处理器气体传感器上海国际传感器展SENSOR CHINA 2024传感器文晔半导体分销商TPS563201DDCR转换器元器件符号大全电气元器件符号大全STM8L051F3P6引脚参数NRF52832-QFAA-RSoC IC特征参数STM32F429IGT6国产CPU厂商龙芯中科FT232R USB UARTTPS74801DRCR线性稳压器大联大MMBT3904LT1G双极晶体管TPS53353DQPRIM03GR信号继电器麒麟芯片骁龙芯片天能电池天聚电池三星逆变器逆变器的作用ATMEGA328P-AUPT100 RTD传感器TPS61021ADSGR开关稳压器STM8S105C6T6MCUPAM8403黎巴嫩对讲机爆炸事件华强北元器件需求激增黎巴嫩对讲机事件对国内的影响MC7815CTGLM339过零检测电路轴承供应商TDA2030H音频放大器ST(意法半导体)TDA7293iPhone 16iPhone 16 Pro手机拆解SG3525ATJA1050T/N,118Vishay(威世科技)半导体交流发电机工作原理作用分类大全L298NLM2576ZC与ZR电线电缆的区别ZC电线电缆ZR电线电缆京东方深天马TLV3501AID线性比较器LM324AD运算放大器浪涌保护器选购指南存储模组库存清理NAND闪存HCNR200HCNR201光耦合器LM311TL494CNOP07CP规格书资料下载TDA2822D放大器LM1875STM32F411CEU6过压过流保护电路PCF8591CC2530ZigbeeAT89C51RC-24AU8Gen2芯片8sGen3芯片8Gen2 和8sGen3芯片对比A4988微步进电机驱动器MC34262富士康SHT30-DIS-B传感器湿度传感器AD7606AD7606-6AD7606-4海康威视LM3886LM3886T引脚功能SS34整流器STM32H750ZBT6华为P70紫光国微LM7805LM2575线性电源开关电源原理图PCB设计TLP521光耦合器BSS123场效应晶体管半导体什么是半导体半导体的作用测绘数据LM386M-1德州仪器联发科X20高通625联发科X20和高通625哪个好处理器对比24C02C骁龙8天玑9000移动处理器处理器测评LM2596什么是嵌入式BSS84,215场效应晶体管LM2904N单相倒顺开关220V接法单相倒顺开关Marvell2024全球芯片市场74HC0474LS04反相器逆变器十大品牌逆变器电子产品需求AT89S52查询电子元器件数据手册网站元器件规格书查询网站查询电子元器件网站电容电容类型电容原理电容常见应用LM2903半导体产业链半导体产品头部品牌半导体代表性公司台积电被盗案A/D转换器A/D转换器类型A/D转换器的优势AT24C02C半导体产业是什么半导体产业的未来会如何发展韦尔股份2024年季度报表半导体2024年前三季度数据报表德州仪器ADS1256IDBR模数转换器固态继电器SSR测试固态继电器的方法CAN总线终端电阻终端电阻选用 120 R 的原因ADXL345ADI(亚德诺)高通骁龙联发科天玑模拟芯片思瑞浦A4950ELJTR-T电机驱动器ALLEGRO(埃戈罗)断路器断路器c和d有什么区别如何选择合适的断路器电磁起重机AD9361BBCZ华为鲲鹏和昇腾区别电磁兼容性(EMC)PCB布局与设计24LC08BMICROCHIP(微芯)同步电机异步电机同步电机和异步电机的区别接地变压器接地变压器的原理及作用SN74HC373引脚图及功能PDF规格书骁龙与天玑哪个好嵌入式系统希荻微诚芯微LM393比较器德州仪器(TI)英飞凌(Infineon)高通骁龙835高通骁龙845高通骁龙835和845差距在哪里MCP60012024电子芯片行业分析电路保护元件常见的电路元件有哪些如何购买电路元件LD1117稳压器高通骁龙888处理器模拟芯片公司ADC0809CCN电子行业宣传渠道如果提升芯片行业流量电子行业推广渠道电子产品推广软文电子营销推广锂电池保护板MOS管的作用BMP280气压传感器中文资料文档BOSCH(博世)MOS管常用的驱动电路2024年度最受欢迎的元器件供应商道合顺元器件是什么半导体是什么元器件和半导体有什么区别L293D电机驱动器功率半导体功率半导体是什么功率半导体行业发展前景如何半导体企业有哪些半导体十大企业品牌ADC0832CCN长电科技华润微芯片封测公司元器件布局元器件布局的基本原则元器件布局的操作指南AT24C256EEPROMMICROCHIP(微芯)芯片手册芯片资料查询查询电子元器件的网站芯片规格书资料下载电子芯片购买网站俄罗斯S-70西方制造零部件芯片资料查询网站PCF8574扩展器元器件供应商LM1117继电器继电器的工作原理继电器的常见类型继电器的作用电子元器件购买网站电子元器件购买平台电子元器件购买网站有哪些MAX3485旺鑫集团电子元器件品牌电子元器件品牌排行榜TPS7A3301模拟芯片是什么模拟芯片有哪些模拟芯片的市场前景数字芯片模拟芯片与数字芯片的区别LAN8720A LAN8720AIDC-DC是什么BUCK变换器伏秒积平衡Boost变换器Buck-Boost变换器电子元器件销售做电子元器件怎么找客户电子元器件怎么开发客户有哪些可以免费入驻的电子元器件商城TLV1117可以免费入驻的电子元器件商城拓展元器件业务的渠道电子元器件活动华为Mate70系列华为Mate X6华为与苹果的对比TDA7388电位器电位器三根线的正确接法比亚迪比亚迪供应商恒流源电路工作原理常见的恒流源电路恒流源电路MAX485CSA+MAXIM(美信)模拟芯片的发展趋势模拟芯片的工作原理模拟芯片的常见类型模拟芯片的应用数字IO模拟IO单片机GPIO的工作模式芯片烧录芯片烧录是什么芯片烧录详细教程CS8416CIRRUS LOGIC(凌云逻辑)数字音频接收器模拟芯片公司排名中国模拟芯片公司前十2024年中国模拟芯片企业排名模拟芯片行业有哪些公司TDA7850功率放大器应用电路图思科去中国化什么是死区如何设置PWM死区时间IR2104驱动器IR2104 与 IRS2104 的区别电容器电机与电容器的关系电容坏了电机还会转吗中国四大协会国产芯片兆欧表的工作原理兆欧表的使用方法兆欧表的使用注意事项直接数字合成器(DDS)AD9833BRMZAD9833BRMZ用于什么产品什么是聚合物锂电池什么是锂电池聚合物锂电池和锂电池有什么区别华为Mate 60的芯片什么是电源纹波电源纹波测试实例DAC0830芯片作用DAC0830中文数据手册电源纹波测量方法纹波噪声的危害和抑制电源纹波调试技巧电源纹波FFT频谱分析MAX7219CWG显示驱动器DCDC转换器DCDC芯片ACS712霍尔效应电流传感器芯片营销渠道芯片企业如何提升知名度有哪些芯片垂直行业平台什么CPU散片如何正确选购CPU散片CPU散片的真伪辨别技巧AD603压控放大器半导体产业链什么是回流焊什么是波峰焊回流焊和波峰焊的区别MAX706ESA+MAX706ESA+替代型号如何简化UPC系统监控电子智能化技术是什么电子智能化技术的作用导线连接器套管是什么导线连接器套管的安装方法导线连接器套管的应用LF353半导体行业有什么特点中小芯片厂商如何提升品牌知名度芯片半导体公司如何提升品牌形象芯片行业有哪些营销渠道TL081IP什么是三进制芯片用三进制的是否更加简单使用三进制的优势及应用三进制和二进制的对比格力芯片SiC芯片工厂DRV8825步进电机芯片原厂活动评选芯片企业提曝光与知名度的活动有哪些芯片是半导体吗芯片与半导体的区别N-MOS工作原理P-MOS工作原理如何选择适合的N-MOS和P-MOSIR2110IR2113IR2110和IR2113的区别比较芯片供应商免费入驻平台有哪些电子元器件平台可以入驻电动机工作原理电动机类型直流电动机与交流电动机的对比继电器是什么线性充电器TP4054TP4054中文资料规格书手机芯片性能排名天梯手机芯片性能排名如何选择手机芯片串联电阻的作用什么是阻抗匹配L7805CV市面上有什么产品用海思的芯片海思芯片的应用智能芯片智能芯片有哪些类型智能芯片的应用汽车芯片汽车芯片企业DC-DC转换器电感在DC-DC转换器的作用电感对DC-DC电路的影响一英寸传感器传感器使用了一英寸传感器的产品有哪些磁致伸缩位移传感器磁致伸缩位移传感器的安装磁致伸缩位移传感器的选择指南汽车传感器传感器技术在汽车安全中的作用电涡流传感器电涡流传感器的原理如何提高电涡流传感器的线性范围TL431CZTL431CZ资料冷却液温度传感器冷却液温度传感器的工作原理冷却液温度传感器的作用TVS瞬态抑制二极管TVS瞬态抑制二极管的命名规则TVS瞬态抑制二极管的电性参数TVS瞬态抑制二极管选型指南芯片代理商芯片原厂芯片现货商MCP4822国产替代方案传感器测头霍尔传感器曲轴位置传感器