电源纹波调试技巧:从测试到FFT频谱分析的全流程指导
2024-12-06 16:15:15 599
干净、稳定的电源是确保数字电路正常运作的关键因素之一。在高速、高性能电子设备中,即使是微小的电源波动也可能会导致系统不稳定或产生错误操作。因此,了解如何准确地测量和分析电源纹波对于工程师来说是一项必备技能。
电源纹波测试的注意事项与调试技巧
基于【专业级电源纹波测量指南:差分放大器和波形分析仪的应用】文中的介绍,使用S204A示波器与N7020A 1:1衰减比探头的组合已经能够提供相当高的测试精度。除了这一配置外,还有几个注意事项值得重视:
1、选择恰当的示波器带宽
测试电源纹波可以将示波器硬件带宽限制到 20MHz。主要是为了避免数字电路的高频噪声影响纹波的测量,尽量保证测量的准确性。如果开关频率较高,也可以考虑设置示波器硬件带宽为 200 MHz。Keysight S 系列示波器内置了两档硬件带宽限制即20MHz 和 200MHz。内置的数学运算(Math-Low Pass Filter)还支持灵活的软件数字带宽限制。
示波器带宽决定因素:由前端放大器等模拟器件的特性决定
示波器带宽参数定义:放大器增益下降到-3dB对应的频点称为带宽
2、调节示波器的垂直刻度尽量将波形展开占屏幕垂直 6-7 格
比如测试 10mV 级的纹波和噪声,可以调节垂直刻度到 1.5mV/Div,S 系列示波器每个通道都有专用的垂直刻度调节旋钮,该旋钮支持按压在粗调和微调之间切换。采用这一设置的目的是尽量用足示波器 ADC 的显示线性范围。
3、设置示波器的波形采集或捕获方式为 12bit 高分辨率模式
高分辨率模式(High Resolution Mode)相对一般采样模式 (Sampling Mode) 主要是将若干个采样点组成一组做平均,将这个平均值作为采样结果保存到采样存储器中,因此这是示波器的显示采样率会下降。这种平均类似滤波的效果,可以有效降低示波器的噪声。鉴于纹波的重复性特征,还可以采用平均模式(Average)以获得更佳的测试和测量结果。必须说明的是,采用高分辨率模式时会降低示波器的数字带宽。因此在测试高频噪声和干扰时不建议采用高分辨率模式。
4、最后一点比较重要的就是示波器探头接地线应尽量短
以免接地线耦合其它干扰和噪声。长地线的寄生电感还会降低测试带宽。因此在 N7023A 的三种灵活测试组合中,采用探头针尖直接点测和短弹簧地针的组合效果最佳,当然采用双列直插连接和贴片器件夹的组合具有更佳的连接和测试方便性,因此有时需要在测试精度和连接方便性之间进行平衡。
以上描述了推荐进行精确电源纹波测试和噪声测试的示波器和探头组合以及测试中的一些小技巧,这些是得到真实测量结果的基础和保证。在得到期望的波形后,又该如何进行电源纹波分析呢?
电源信号测试分析实例
通常情况下,可以采用直方图统计和进行简单的 FFT频谱分析:
直方图统计和 FFT 频谱分析
直方图统计可以观察得到纹波在数值上的分布情况,而 FFT 频谱分析则可以从频域角度去对电源纹波和噪声的本质进行深层次的观察。如上图示,通过对信号进行 FFT 运算立刻可以发现此电源噪声频率为 1.71 GHz。
如果对信号进行 FFT分析后,发现多种频率源的干扰,又该如何分别进行定位和量化呢?
以下图为例,黄色 CH1 波形是测得的 3.3V 的电源信号,f2 是采用 Horz Gateing 函数运算得到的一段水平放大波形。对 CH1 信号进行 FFT 运算可以看到其频谱中包含 2.8 M 开关频率及其谐波分量和来自于 10 MHz 时钟的干扰。如果测试得到的纹波结果超过系统容许值,那么该如何改进呢?显然,2.8 MHz 的开关频率是已经选定的开关电源带来的,而 10 MHz 的时钟干扰是外来干扰,比较容易通过重新布线或其它方法去除。因此我们现在就需要对 10 MHz 的时钟干扰耦合进来的电源噪声数值进行定量分析。
电源信号测试分析实例(1)
因此将 10 MHz 时钟信号接入到 CH2,并设置触发源为 CH2。那么其它干扰源耦合到电源上的噪声因为与 10 MHz 时钟无关具有随机性。设置示波器的采集模式为平均,比如 1024 次平均,随机信号就被滤除掉。这时就可以清晰的辨别出 3.3V 电源信号上因为 10 MHz 时钟产生的噪声和干扰的幅度。如下图示:
电源信号测试分析实例(2)
精确的电源纹波测试不仅依赖于先进的仪器和技术,还需要结合实际应用场景中的经验和技巧。只有这样,才能确保电子系统的电源供应既干净又稳定,最终实现产品的高性能与长寿命。希望今天的分享能为各位工程师在未来的项目中提供有价值的指导和帮助。